HETEROSIS AND INBREEDING DEPRESSION STUDY IN COWPEA [Vigna unguiculata (L.) WALP.]

PATEL, HIRAL*, PATEL, J. B.[®], SHARMA, S. C. AND ACHARYA, S.

SARDARKRUSHINAGAR DANTIWADA AGRICULTURAL UNIVERSITY SARDARKRUSHINAGAR - 385 506, GUJARAT, INDIA

[®] JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH- 362 001, GUJARAT, INDIA

*E-mail: hiralpatel.agri@gmail.com

ABSTRACT

An investigation to study the genetics of seed related attributes in cowpea [Vigna unguiculata (L.) Walp.]" was undertaken at the Centre of Excellence for Research on Pulses, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar. Three crosses (GC 2 x PGCP 5, GC 2 x PGCP 13 and GC 516 x PGCP 1) along with its parental seed, F₂, BC₁ and BC₂ made the complete set of six generations $(P_1, P_2, F_1, F_2, BC_1)$ and BC_2 for genetic analysis. The experiment was laid out in a Compact Family Block Design with three replications during kharif 2011. A single replication comprised of one row of parents and F_1 , two rows of the backcrosses generations, BC_1 and BC_2 and four rows of the F_2 . The characters viz., days to flowering, days to maturity, number of pods per plant, number of seeds per pod, seed yield per plant, biological yield per plant, harvest index and 100-seed weight were subjected to estimate the heterosis and inbreeding depression. The analysis of variance revealed significant differences among generations in most of the characters studied in all the three crosses, except days to flowering in crosses I and II, indicating considerable variability in the experimental material. Out of three crosses evaluated, 2 crosses, GC 2 x PGCP 5 and GC 516 x PGCP 1 expressed significant and desirable heterosis for seed yield per plant and 100 seed weight. All three crosses (GC 2 x PGCP 5, GC 2 x PGCP 13 and GC 516 x PGCP 1) recorded significant and positive heterobeltiosis for 100 seed weight, also displayed high inbreeding depression for this trait, indicated the importance of non-additive gene action. Seed yield per plant also noted significant inbreeding depression in all three crosses.

Key Words: Heterosis, Cowpea, [Vigna unguiculata (L.) Walp.]

INTRODUCTION

Cowpea is an important multi utility crop introduced in Indian sub continent about 3500 years ago along with sorghum and millets. Among all the pulses, cowpea [Vigna unguiculata (L.) Walp.], locally known as lobiya, chowla (chowli), southern pea or black eye pea, is an annual legume that is adopted to

warm condition and cultivated in the tropics and sub-tropics for dry grains, green edible pods for vegetable as well as fodder. Cowpea fits well in a variety of cropping system and is grown as cover crop, mixed crop, catch crop and green manure crop. It can be capable of restoring soil fertility and therefore, remain an integral part of subsistence and sustainable

production system. Being a legume crop, cowpea fix substantial quantities of biological nitrogen by virtue of their symbiotic association with Rhizobium bacteria (Schultze and Kondorosi, 1998, Serraj, 2004) ranging from potential rates of 73 - 80 kg / ha (Yamada, 1974). Besides it would supply up to 230 - 275 quintals of palatable hay per hectare as fodder (Haq, 1981). Cowpea is chiefly important as a source of protein and varies from 20 - 25% that is double of the protein in most cereals (Stanton, 1966). Cowpea is comparatively a cheaper source of quality protein, phosphorus, iron and vitamins and an excellent substitute for meat, eggs and other protein rich foods. Dry cowpea seeds are an important source of affordable protein, vitamin B-complex and minerals in the predominantly carbohydrate based diet of people.

Presently, cowpea is an important pulse crop in India covering on an area of 7.7 million hectares (Yadav *et al.*, 2010). However, the exact productivity statistics are not available though the broad estimates put it around five to six quintals per hectare. The experimental yields of the improved genotypes have been reported around 15 quintals per hectare. In India, cowpea is grown in almost all the states but the major cowpea growing states are Gujarat, West Bengal, Tamil Nadu, Andhra Pradesh, Kerala and Orissa.

In a self-pollinating crop like cowpea, variability is created through often hybridization between carefully chosen parents. The scope of exploitation of hybrid vigour will depend on the direction and magnitude of heterosis, biological feasibilities and the type of gene action involved. The information of such estimates is essential to plan efficient breeding programme for the improvement of the crop. Although the hybrid vigour cannot be exploited commercially in highly self-pollinated crop like cowpea, the heterotic F₁'s can be used to isolate a higher frequency of productive derivatives in their later generations. Being a self pollinated crop, genetic improvement in cowpea has been made through conventional techniques such as selection from local materials, pedigree method of breeding *etc*. However, a high degree of heterosis has been reported in the crop, though its commercial exploitation has not been possible due to absence of male sterility and efficient pollinating system. Keeping in view, the present experiments was planned to ascertain hybrid vigour and inbreeding depression in cowpea.

MATERIALS AND METHODS

The present investigation to study the genetics of seed related attributes in cowpea unguiculata (L.) Walp.]" [Vigna undertaken at the Centre of Excellence for Pulses, Sardarkrushinagar Research on Agricultural University, Dantiwada Sardarkrushinagar during kharif 2011. Three crosses (GC 2 x PGCP 5, GC 2 x PGCP 13 and GC 516 x PGCP 1) made at the centre during kharif 2010 were grown along with its 5 parents (GC 2, GC 516, PGCP 5, PGCP 13 and PGCP 1) to make the F2, BC1 and BC2 generations during summer 2011 by hand pollination. Therefore, the material for the present investigation consisting complete set of six generations $(P_1, P_2, F_1, F_2, BC_1 \text{ and } BC_2)$ of for generation mean analysis. experiment was laid out in a Compact Family Block Design with three replications. The three crosses formed the family block, whereas six generations of each cross represented individual plots within family. A single replication comprised of one row of parents and F₁, two rows of the backcrosses generations, BC₁ and BC₂ and four rows of the F₂. Inter and intra row spacing was kept 45 cm x 15 cm. Recommended agronomic practices and necessary plant protection measures were timely adopted for raising the successful crop. The observations recorded for the characters viz., days to flowering, days to maturity, number of pods per plant, number of seeds per pod, seed yield per plant, 100 seed weight, biological yield per plant and harvest index on five randomly selected plants for P_1 , P_2 and F_1 in each replications. The mean values of P_1 , P_2 and F_1 were subjected to estimate the relative heterosis and heterobeltiosis as per the formula suggested by Briggle (1963) and Fonseca and

Patterson (1968). Inbreeding depression was computed for all the characters for that heterosis was estimated by using the following formulae:

Inbreeding depression =
$$[\overline{(F_1 - F_2)}/\overline{F_1}] \times 100$$
 (%)

The significance of the heterosis and inbreeding depression was tested by comparing the calculated 't' value with the table 't' value at 5 per cent (1.960) and 1 per cent (2.576) levels of significance.

RESULTS AND DISCUSSION

The analysis of variance for individual character was carried out for each of the three crosses for seed yield per plant and its component traits *viz.*, days to flowering, days to maturity, number of pods per plant, number of seeds per pod, biological yield per plant, harvest index and 100-seed weight (Table 1). The mean sum of squares revealed significant differences among the generations for most of the characters studied in all the three crosses, except days to flowering in crosses I and II, indicating considerable variability in the experimental material.

The commercial exploitation of heterosis in crop plant is regarded as major breakthrough in the realm of plant breeding. It is a phenomenon of immense practical importance, as its utilization has led to considerable yield improvement in several crop plants. The main aim of heterosis in the present study was to search out the best combination of parents giving high degree of heterosis and its exploitation to get better transgressive segregants.

The degree of heterosis varied from cross to cross for all the eight characters. High heterosis in certain crosses and low in others

revealed that nature of gene action varied with the genetic makeup of the individual parents. In the present investigation, the crosses exhibited conspicuous heterotic response over mid-parental values for different characters. However, the measure of relative heterosis is relatively less important than heterobeltiosis and, therefore, it is better to measure the heterosis in terms of superiority over the better parent rather than mid-parent.

With regard to the heterosis over midparent, two of three hybrids evaluated viz., GC 2 x PGCP 5 and GC 516 x PGCP 1 exhibited significant and desirable heterosis for seed yield per plant and 100 seed weight, with a value of 10.21 per cent and 21.69 per cent, respectively, and for 100 seed weight with a value of 17.24 per cent and 30.10 per cent, respectively (Table 2). Cross, GC 516 x PGCP 1 (32.92 %) showed significant and desirable heterosis for biological yield per plant. Singh & Jain (1972), Kheradnam and Nicknejad (1975), Chikkadevaiah et al. (1980), Ningappa (1981), Selvaraj and Annappan (1983), Singh (1983), Zaveri et al. (1983), Patil and Shete (1987), Chaudhary (1993), Hazra et al. (1993), Sawant et al. (1994), Sangwan and Lodhi (1995), Bhor et al. (1997), Bhushana et al. (2000), Danam and Chaudhary (2000), Haibatpure et al. (2002), Rashwan (2002), Singh and Arora (2003), Swidan and Suzan (2005), Patel et al. (2009) and Rashwan (2010) have also reported significant and positive relative heterosis for seed yield per plant in cowpea.

In the present study, an attempt was made to estimate the heterobeltiosis and inbreeding depression for seed yield per plant and its attributes in cowpea. The manifestation of heterobeltiosis was presented in Table 2. The results revealed that significant and desirable heterobeltiosis was noticed for different characters studied. All the three crosses (GC 2 x PGCP 5, GC 2 x PGCP 13 and GC 516 x PGCP 1) recorded significant and positive heterobeltiosis for 100 seed

weight, ranging from 60.00 per cent (GC 2 × PGCP 13) to 73.94 per cent (GC $2 \times PGCP$ 5). Estimates of heterobeltiosis ranged from 56.79 per cent (GC 2 × PGCP 5) to -43.48 per cent $(GC2 \times PGCP13)$, -29.10 per cent $(GC 2 \times$ PGCP 13) to -9.04 per cent (GC $2 \times PGCP 5$), -38.93 per cent (GC $2 \times PGCP 13$) to 0.75 per cent (GC 516 × PGCP 1), -19.75 per cent (GC $2 \times PGCP$ 13) to 2.25 per cent (GC $2 \times PGCP$ 5), and -34.59 per cent (GC $2 \times PGCP$ 5) to 17.79 per cent (GC $516 \times PGCP 1$) for number of pods per plant, number of seeds per pod, seed yield per plant, biological per plant and harvest index, respectively. In agreement to the findings of the present study, high heterobeltiosis for 100 seed weight has been reported by Singh and Jain (1972), Jain (1982), Singh (1983), Sangwan and Lodhi (1995) and Patel et al. (2009).

Data on inbreeding depression for seed yield per plant an its components presented in Table 2 indicated that crosses showing high heterobeltiosis effect for 100 seed weight also displayed high inbreeding depression for this trait, ranging from 6.52 per cent (GC 2 × PGCP 13) to 29.90 per cent (GC 516 × PGCP 1). Seed yield per plant also recorded significant inbreeding depression in all three crosses studied ranging from 5.99 per cent (GC 516 \times PGCP 1) to 55.52 per cent (GC 2 \times PGCP 5). In addition to that, cross I also evinced significant inbreeding depression for harvest index and number of seeds per pod. Bhor et al. (1997), Mehta (2000), Pal et al. (2003), Swidan and Suzan (2005), Rashwan (2010) and Yadav et al. (2010) also recorded significant and varying degree of inbreeding depression for seed yield and its different components. 100 seed weight that showed high heterobeltiosis with concomitant high inbreeding depression indicated the importance of non-additive gene action.

SUMMARY AND CONCLUSION

From the results it cane be concluded that experimental material had consider variability. Out of three crosses evaluated, 2

crosses, GC 2 x PGCP 5 and GC 516 x PGCP 1 expressed significant and desirable heterosis for seed yield per plant and 100 seed weight could be exploited for commercial cultivation. However, being a self pollinated crop, these crosses may be exploited for getting transgressive segregants in the subsequent generation for the yield improvement in cowpea. All three crosses (GC 2 x PGCP 5, GC 2 x PGCP 13 and GC 516 x PGCP 1) significant recorded and positive heterobeltiosis for 100 seed weight, also displayed high inbreeding depression for this trait, indicated the importance of non-additive gene action. Seed yield per plant also noted significant inbreeding depression in all three crosses.

REFERENCES

- Bhor, T. J., Kute, N. S., Dumbre, A. D. and Sarode, N. D. (1997). Heterosis and inbreeding depression in cowpea. *Indian J. Agril. Res.*, **31**: 122–126.
- Bhushana, H. O., Viswanatha, K. P., Ronachala, P. A. and Halesh, G. K. (2000). Heterosis in cowpea [Vigna unguiculata (L.) Walp.] for seed yield and its attributes. Crop Res., 19(2): 277-280.
- Briggle, L. W. (1963). Heterosis in Wheat: A Review. *Crop Sci.*, **3**: 407-412.
- Chaudhary, F. P. (1993). Genetic architecture of yield and its components in cowpea [Vigna unguiculata (L.) Walp.]. Ph.D. Thesis (Unpublished), Submitted to Gujarat Agricultural University, Sardarkrushinagar.
- Chikkadevaiah, C. K. M., Thairumalachar, D. K. and Shrivashankar, G. (1980). Heterosis in cowpea. *Curr. Res.*, **9**(1): 59-60.
- Danam, S. and Chaudhary, F. P. (2000). Heterosis studies in cowpea. *Annals of Agril Res.*, **21**(2): 248-252.

- Fonseca, A. and Patterson, F. L. (1968). Hybrid vigour in a seven parent diallel cross in common winter wheat (*Triticum aestinum* L.). *Crop Sci.*, **8**: 85-88.
- Haibatpure, S. H., Solanki, S. D. and TIkka, S. B. S. (2002). Heterosis in cowpea [Vigna unguiculata (L.) Walp.]. In: Henry, A.; Kumar, D. and Singh, N.B. (Eds.). Advances in Arid Legume Research, PP. 34-37.
- Haq, F. (1981). Proceeding of National Workshop on Pulses, BARI / IDRC, August, 18-19.
- Hazra, P., Das, P. K. and Som, M.G. (1993).

 Analysis of heterosis for pod yield and its component in relation to genetic divergence of the parents and specific combining ability of the crosses in cowpea (*Vigna Unguiculata* (L.) Walp.). *Indian J. Genet.*, **53** (4): 418-423.
- Jain, S. (1982). Studies on heterosis and combining ability for forage and seed yield character in cowpea. *Thesis Abstract*, **8**(2): 182-183.
- Kheradnam, M. B. and Nicknejad, M. (1975). Heterosis, inbreeding depression and reciprocal effects for yield and yield components in cowpea crops. *Crop Sci.*, **15**(5): 689-
- Mehta D. R. (2000). Comparison of observed and expected heterosis and Inbreeding depression in four cowpea crosses. *Indian J. Agril. Res.*, **34**(2): 97-101.
- Ningappa, M. S. (1981). Genetic analysis of yield and yield components in cowpea. *Thesis Abstract*, **7**: 233-234.
- Pal, A. K., Singh, B. and Maurya, A. N.

 (2003). Inbreeding depression in cowpea (Vigna unguiculata (L.)

 Walp.). J. Applied Hort., 5(2): 105107.

- Patel, S. J., Desai, R. T., Bhakta, R. S., Patel,
 D. U., Kodapplly, V. C. and Mali,
 S. C. (2009). Heterosis studies in
 cowpea (Vigna unguiculata (L.)
 Walp). Legume Res., 32(3):199202.
- Patil, R. B. and Shete, M. M. (1987). Heterosis in crosses of seven genotypes of cowpea. *J. Maharashtra Agril. Univ.*, **12**(1): 51-54.
- Rashwan, A. M. A. (2002). Genetic studies on some Agro-economic characteristics in cowpea [Vigna unguiculata (L.) Walp.] Ph.D. Thesis, Faculty of Agriculture, Assuit University, Egypt.
- Rashwan, A. M. A. (2010). Estimation of some genetic parameters using six populations of two cowpea hybrids. *Asian J. Crop Sci.*, **2**: 261-267.
- Sangwan, R. S. and Lodhi, G. P. (1995). Heterosis for grain characters in cowpea [Vigna unguiculata (L.) Walp.]. Legume Res., 18(2): 75-80.
- Sawant, D. S., Birari, S. P. and Jadhav, B. B. (1994). Heterosis in cowpea. *J. Maharashtra Agril. Univ.*, **19**(1): 89-91.
- Schultze, M. and Kondorosi, A. (1998). Regulation of symbiotic root nodule development. *Annual Rev. Genet.*, **32**:33-57.
- Selvaraj, U. and Annappan, R. S. (1983). A study of heterosis in cowpea [Vigna unguiculata (L.) Walp.]. In: Pre-Congress Scientific Meeting on Genetic and Improvement of Heterotic System. Coimbatore, India.
- Serraj, R. (2004). Symbiotic nitrogen fixation: Challenges and future prospects forapplication in tropical agro ecosystems. Oxford and IBH, New Delhi, India, pp.135-137.
- Singh, A. and Arora, R. N. (2003). Heterosis and inbreeding depression for grain

- characters in cowpea. Advanced in Arid Legume Research, PP. 38-41.
- Singh, K. B. and Jain, R. P. (1972). Heterosis and combining ability in cowpea. *Indian J. Genet.*, **32**(1): 62-66.
- Singh, R. P. (1983). Heterosis in cowpea. *J. Res. Assam Agril. Univ.*, **4**(1): 12-14.
- Stanton, W. R. (1966). Grain legumes in Africa. Food and agricultural organization of the United Nations, Rome, Italy, pp. 210-213.
- Swidan, A. U. and Suzan, A. (2005). Evaluation of cowpea parental and hybrid genotypes for heterosis and inbreeding depression. *J. Agril.*

- *Sci.*, Mansoura University, **30**(7): 3773-3782.
- Yadav, K. S., Yadav, H. S. and Dixit, H. (2010). Heterosis and inbreeding depression in cowpea, *International J. Agril. Sci.*, **6**(2): 537-540.
- Yamada, N. (1974). Biological nitrogen fixation limitless resources supporting agriculture. Nettai Noken Shubo, 25: 20-28.
- Zaveri, P. P., Patel, P. K., Yadavendra, J. P. and Shah, R. M. (1983). Heterosis and combining ability in cowpea. *Indian J. Agril. Sci.*, **53**(9): 793-796.

www.arkgroup.co.in Page 170

Table 1: Analysis of variance of generation means of three crosses for various characters in cowpea

Source	d.f	Cross		
		I	II	III
	-	Days to flower	ring	1
Replications	2	10.05	1.82	9.20
Generations	5	7.82	4.34	76.17**
Errors	10	4.32	1.54	7.51
	-	Days to matu	rity	
Replications	2	8.17	5.62	1.30
Generations	5	13.97*	15.11*	61.08**
Error	10	2.83	3.02	0.93
	-	Number of pods p	er plant	-
Replication	2	2.18	0.98	6.70
Generation	5	153.64**	94.16**	88.36**
Error	10	2.42	1.87	8.84
		Number of seeds	per pod	-
Replication	2	0.88	0.14	0.09
Generation	5	4.64**	11.48**	7.65**
Error	10	0.31	0.09	0.23
		Seed yield per pl	ant (g)	'
Replications	2	0.21	0.26	0.16
Generations	5	24.94**	27.02**	7.50**
Errors	10	0.10	0.38	0.14
	E	iological yield per	plant (g)	
Replications	2	14.48	2.96	19.66
Generations	5	43.41*	73.02**	491.43**
Error	10	12.49	3.96	13.96
	<u>'</u>	Harvest index	(%)	
Replication	2	1.14	6.49	4.72
Generation	5	277.46**	358.79**	260.60**
Error	10	2.24	4.98	5.99
	1	100 seed weigh	nt (g)	I
Replication	2	0.01	0.38	0.28
Generation	5	17.66**	25.99**	17.69**
Error	10	0.28	0.32	0.09
		1		<u> </u>

^{*, **} Significant at 5 per cent and 1 per cent levels of significance, respectively

www.arkgroup.co.in Page 171

Table 2: Magnitude of heterosis (%) and inbreeding depression (%) for various characters in cowpea

Estimates	Crosses			
	Cross I Cross II		Cross III	
	(GC 2 x PGCP 5)	(GC 2 x PGCP 13)	(GC 516 x PGCP 1)	
	Days to floweri		T	
Relative heterosis	6.90	-0.85	34.74**	
Heterobeltiosis	10.71*	0.86	36.61**	
Inbreeding depression	4.03	-6.84*	19.09	
Relative heterosis	Days to maturi		16.83**	
	5.69*	2.72		
Heterobeltiosis	3.72	2.16	19.90**	
Inbreeding depression	8.21	-1.91	8.50**	
	Number of pods pe	r plant		
Relative heterosis	-37.50**	-10.76	-44.48**	
Heterobeltiosis	-56.79**	-43.48**	-55.97**	
Inbreeding depression	17.71	-11.03*	-31.84	
	Number of seeds po	er pod		
Relative heterosis	4.89	-9.75**	7.49	
Heterobeltiosis	-9.04*	-29.10**	-12.92**	
Inbreeding depression	15.53**	-11.67**	-2.67**	
	Seed yield per pla	nt (g)	•	
Relative heterosis	10.21**	-6.73	21.69**	
Heterobeltiosis	-25.64**	-38.93**	0.75	
Inbreeding depression	55.52**	37.12**	5.99**	
	Biological yield per p	plant (g)	1	
Relative heterosis	11.67	0.17	32.92*	
Heterobeltiosis	2.25	-19.75*	-13.13	
Inbreeding depression	15.39	2.91	9.23	
	Harvest index (%)		
Relative heterosis	-6.88	0.25	-24.60**	
Heterobeltiosis	-34.59**	-24.05**	17.79	
Inbreeding depression	44.88*	35.01	-2.61	
	100 seed weight	(g)	1	
Relative heterosis	17.24**	-4.22	30.10**	
Heterobeltiosis	73.94**	60.00**	82.19**	
Inbreeding depression	9.79**	6.52**	29.90**	
	1	<u> </u>	I	

^{*} and ** indicates significant at 5 per cent and 1 per cent levels of significance, respectively.

[MS received: May 15, 2013] [MS accepted: June 21,2013]